Colab File: https://colab.research.google.com/drive ... g(以火災煙霧為例)
Datasets : https://public.roboflow.com/
流程
1.pull YoloV5專案 + 安裝套件
2.註冊Roboflow + 下載訓練用公開資料
3.建立自定義模組並設定參數
4.訓練
5.訓練完畢,測試
---------------------------
1.建立工作區(資料夾)
2.pull專案 + 安裝套件
代碼: 選擇全部
git clone https://github.com/ultralytics/yolov5
pip install -qr yolov5/requirements.txt
cd yolov5Roboflow官網: https://roboflow.com/
4.取得公開資料集下載連結(Public Dataset Download Link)並下載
Roboflow Public Dataset: https://public.roboflow.com/
代碼: 選擇全部
curl -L "PASTE YOUR LINK HERE" > roboflow.zip; unzip roboflow.zip; rm roboflow.zip# yolov5/models/custom_yolov5s.yaml
代碼: 選擇全部
# parameters
nc: {num_classes} # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Focus, [64, 3]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, BottleneckCSP, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 9, BottleneckCSP, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, BottleneckCSP, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 1, SPP, [1024, [5, 9, 13]]],
[-1, 3, BottleneckCSP, [1024, False]], # 9
]
# YOLOv5 head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, BottleneckCSP, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]代碼: 選擇全部
python train.py --img 416 --batch 16 --epochs 100 --data =..\data.yaml --cfg =.\models\custom_yolov5s.yaml --weights '' --name yolov5s_results --cache照片
代碼: 選擇全部
python detect.py --weights runs/exp0_yolov5s_results/weights/best.pt --img 416 --conf 0.4 --source ../test/images代碼: 選擇全部
import glob
from IPython.display import Image, display
for imageName in glob.glob('/content/yolov5/inference/output/*.jpg'):
display(Image(filename=imageName))
print("\n")代碼: 選擇全部
python detect.py --weights runs/exp0_yolov5s_results/weights/best.pt --source ../video4.mp4 --conf 0.4